ALTERAÇÕES QUÍMICAS DO SOLO E PRODUTIVIDADE DO ARROZ IRRIGADO DURANTE TRÊS SAFRAS CONSIDERANDO A APLICAÇÃO DE CALCÁRIO E GESSO AGRÍCOLA

Vanderson Modolon Duart¹, Adriana Modolon duart¹, Mario Felipe Mezzari¹ Rogério de Souza Moretto¹ Bruno Cechinel Borges¹ Alexandre Modolon Duart² Andreza Modolon Duart² Leandro Lunardi³ Fernando José Garbuio⁴ Eduardo Fávero Caires⁵

¹IFC – Campus Santa Rosa do Sul/Acadêmico do curso de Engenharia Agronômica/ vandersonduart@gmail.com ²IFC – Campus Santa Rosa do Sul/Estudante do curso Técnico Agrícola/ alexandremodolon@hotmail.com ³IFC – Campus Santa Rosa do Sul/Técnico de laboratório de análises químicas/ leandro.lunardi@ifc-sombrio.edu.br ⁴IFC – Campus Santa Rosa do Sul/Professor, Doutor em agronomia/ fernando.garbuio@santarosa.ifc.edu.br ⁵UEPG - Universidade Estadual de Ponta Grossa/ Professor, Doutor em Agronomia/ efcaires@uepg.br

Resumo: O sistema de plantio de arroz irrigado predominante em Santa Catarina "pré germinado" esta perdendo espaço para o sistema de cultivo em solo seco/cultivo mínimo. Isso gera demanda por informações referentes à correção da acidez do solo, por estas áreas, no sistema de cultivo em solo seco, permanecer drenadas durante o período em que o arroz não está sendo cultivado. A aplicação de gesso agrícola vem sendo estudada para diversas culturas de sequeiro, porém não existem trabalhos com aplicação de gesso, e calcário, em áreas alagadas. Assim, o objetivo deste estudo foi avaliar a produtividade de arroz irrigado semeado em sistema de cultivo em solo seco e os atributos químicos do solo em função da calagem e gessagem. O experimento foi realizado durante as safras 2013/14, 2014/2015 e 2015/16 na área experimental de arroz irrigado do Instituto Federal Catarinense - Campus Santa Rosa do Sul. O delineamento experimental empregado foi o de blocos ao acaso, em esquema de parcelas subdivididas, com três repetições. Os tratamentos utilizados nas parcelas foram: testemunha, 2, 4, 6 t. ha-1 de calcário dolomítico. Os tratamentos empregados nas subparcelas foram: testemunha, 2, 4, 6 t. ha-1 de gesso agrícola, aplicados em superfície. O híbrido utilizado foi Inov CL®. Amostras de solo foram coletadas nas camadas de 0–0,20; 0,20–0,40; 0,40–0,60 e 0,60–0,80 m de profundidade após a colheita da safra 2015/16. A colheita foi realizada em uma área útil de 6 m². Observou-se efeito da calagem até 0,40 m de profundidade, porém a calagem não influenciou positivamente a produtividade de grãos. A aplicação de gesso agrícola foi eficiente em melhorar os teores de Ca e S-SO₄²⁻ até 0,80 m de profundidade e aumentou a produtividade de grãos nas três safras avaliadas.

Palavras-Chave: Cultivo mínimo, Fertilidade do solo, Oryza sativa, Enxofre, Acidez do solo.

1 INTRODUÇÃO

O sistema de cultivo de arroz irrigado em Santa Catarina predominante é o prégerminado, de modo geral, para corrigir a acidez do solo nesse sistema de plantio não é recomendada a calagem. Pois aproximadamente um mês a partir da inundação, o pH do solo se estabiliza entre 6,0 e 6,5 pelo fato de ocorrer um processo conhecido como "auto calagem". Porém, recomenda-se 1 a 2 t ha-1 de calcário dolomítico quando o solo apresentar teores de cálcio e magnésio abaixo de 20 mmol_c dm-3 e 5 mmol_c dm-3, respectivamente, para suprir as deficiências destes nutrientes (Comissão de Química e Fertilidade do solo, 2004).

Muitas propriedades catarinense estão passando por um processo de mudança de manejo no sistema de cultivo de arroz irrigado, trocando o sistema de plantio prégerminado pelo sistema de semeadura em solo seco/em linha ou cultivo mínimo, já bem consolidado no estado do Rio Grande do Sul. Este sistema proporciona benefícios como, menor custo no preparo do solo, a primeira aplicação de nitrogênio e herbicida é facilitada em solo seco, uso mais eficiente da água, pois a entrada de água ocorre

aproximadamente 30 dias após a semeadura. Por esse motivo está surgindo dúvidas relacionadas à correção da acidez do solo nesse período em que o solo permanece seco e é onde ocorre a emergência e crescimento de plântulas, permanecendo sem a lâmina de água até o estádio V3-V4 do desenvolvimento do arroz, aproximadamente 30 dias após a semeadura.

Com o intenso cultivo e as altas produtividades é extraída grande quantidade de nutrientes do solo. O enxofre é um nutriente que fica esquecido nas recomendações de adubação. Geralmente são repostos apenas os nutrientes considerados primário: nitrogênio (N), fósforo (P) e potássio (K), utilizando como fonte de fósforo MAP, DAP e superfosfato triplo, preferida em relação ao superfosfato simples por economia. Além disso, a fonte de adubo nitrogenado utilizada é a ureia, a qual também não apresenta enxofre em sua composição.

O gesso agrícola, um subproduto da indústria de ácido fosfórico, contém principalmente sulfato de cálcio e pequenas concentrações de P e F. Além do fornecimento de enxofre, o gesso pode atuar na melhoria das condições de acidez no subsolo, por meio de aumento de Ca²⁺, da formação de espécies menos tóxicas de Al (AlSO₄+) e da precipitação de Al³⁺ (RAIJ, 1988; CARVALHO & RAIJ., 1997).

Diante do exposto, este trabalho teve como objetivo avaliar as alterações nos atributos químicos do solo e a produtividade de grãos de arroz irrigado em função da aplicação de calcário dolomítico e gesso agrícola em sistema de cultivo mínimo em três safras consecutivas.

2 METODOLOGIA

O experimento foi conduzido durante as safras 2013/14, 2014/15 e 2015/16 na área experimental de arroz irrigado do Instituto Federal Catarinense - *Campus* Santa Rosa do Sul, localizado no município de Santa Rosa do Sul/SC. O experimento foi conduzido em um solo caracterizado como um Gleissolo Melânico Tb Distrófico (Embrapa, 2006).

O delineamento experimental foi de blocos casualizados em parcelas subdivididas com três repetições. Nas parcelas principais (24 x 10 m) foram implantados os tratamentos de calcário dolomítico, que consistiram em quatro doses zero, 0,5, uma e 1,5 vezes a dose recomendada, ficando definidos como: 0, 2, 4, 6 t ha⁻¹. Tais valores foram definidos pelo índice SMP para elevação dos valores de pH em água para 5,5 considerando a camada de 0 - 0,20 m (Comissão de Química e Fertilidade do solo, 2004). No dia 15/06/2013 fez-se a aplicação de calcário dolomítico manualmente, sem

incorporação. Nas subparcelas (6 x 10 m) realizou-se aplicação de gesso agrícola de forma manual, sem incorporação, 67 dias após a aplicação de calcário, com quatro níveis: 0, 2, 4, 6 t ha⁻¹.

O híbrido de arroz utilizado foi a cultivar Inov CL, semeada na densidade de 45 kg ha⁻¹ de semente. A semeadura foi realizada em cultivo mínimo, em linhas com espaçamento de 0,17 m, com auxílio de uma semeadoura de plantio direto na primeira e segunda safra, na terceira safra foi semeada a semente pré germinada a lanço na densidade de 45 kg ha⁻¹. A semeadura ocorreu no dia 02/11/2013, 11/11/2014 e 02/12/2015, primeiro, segundo e terceiro ano, respectivamente. A adubação de base foi 20 kg ha⁻¹ de N, 40 kg ha⁻¹ de P₂O₅, e 70 kg ha⁻¹ de K₂O, para ambos os anos de cultivo. Os controles de plantas daninhas, pragas e doenças foram realizados de acordo com o aparecimento e recomendações regionais.

Foi realizada coleta de solo na camada de 0-0,20; 0,20-0,40; 0,40-0,60 e 0,60-0,80 m de profundidade, 35 meses após a aplicação da calagem. Esta coleta ocorreu após a colheita da terceira safra. Para a estimativa da produtividade foi colhida uma área útil de 6 m² em cada subparcela. A colheita foi realizada de forma manual. O material colhido foi trilhado em trilhadeira estacionária. Foram coletadas amostras para determinação da umidade, a qual foi corrigida em todas as parcelas para 130 g kg⁻¹ de água.

Os resultados foram submetidos à análise de variância e foram ajustadas equações de regressão por polinômios ortogonais, mediante auxílio do programa estatístico SISVAR (Ferreira, 2011).

3 RESULTADOS E DISCUSSÃO

Não houve interação significativa entre os tratamentos de calagem e gesso nos atributos químicos do solo.

A calagem superficial e a aplicação de gesso apresentaram efeito significativo nos atributos químicos do solo da camada de 0–0,20 m de profundidade, após a colheita da terceira safra de arroz irrigado. As doses de calcário aumentaram linearmente o pH em CaCl₂, o teor de Ca e a relação Ca/Mg e diminuíram, também de forma linear, a saturação por alumínio. Os teores de Mg, P e K não foram alterados com a calagem (Tabela 1). As doses de gesso aumentaram linearmente os teores de Ca, S-SO₄²⁻ e a relação Ca/Mg, e não interferiram significativamente no pH em CaCl₂, nos teores de Mg, P e K, e na saturação por alumínio (Tabela 1).

Tabela 1: Atributos químicos do solo na camada de 0-0,20 m de profundidade em função da aplicação de calcário e gesso aos 35 meses após a aplicação de calcário Dolomítico. Santa Rosa do Sul, Safra 2015/16.

Tratamentos	pH ¹	Ca	Mg	Sat. Al	S-SO ₄ -2	P ²	K	Ca/Mg
Calcário t ha ⁻¹	mmol₀ dm ⁻³		%	mg dm ⁻³		mmol _c dm ⁻³		
0	4,21	26,50	19,58	11,91	20,92	16,63	1,67	1,4
2	4,34	28,42	19,50	6,69	21,50	15,12	1,32	1,5
4	4,45	32,17	17,41	3,96	18,65	17,26	1,61	2,0
6	4,76	37,75	21,58	1,94	21,52	16,06	1,49	1,7
Efeito	L**	L**	ns	L**	ns	ns	ns	L*
C.V. (%)	3,65	14,09	15,79	48,08	28,44	18,26	51,40	27,05
Gesso t ha ⁻¹								
0	4,44	29,58	20,42	6,27	16,41	15,67	1,45	1,4
2	4,43	30,67	20,25	6,73	18,70	16,13	1,50	1,5
4	4,41	31,08	18,75	6,10	20,34	16,72	1,34	1,6
6	4,47	33,50	18,67	5,40	27,15	16,54	1,80	2,0
Efeito	ns	L*	ns	ns	L**	ns	ns	L*
C.V. (%)	2,81	11,37	19,74	39,68	27,60	13,96	48,05	28,71

¹ pH em Cacl₂ 0,01 mol L⁻¹; ² P extraído por solução de Mehlich-1; L = efeito linear por regressão polinomial; ** p < 0,01, * p < 0,05, ns – não significativo.

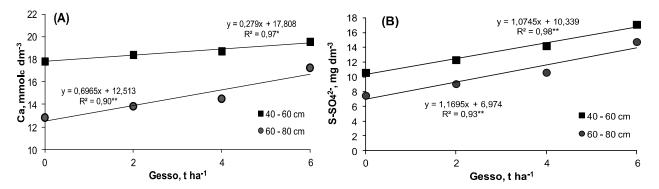

Na camada de 0,20–0,40 m de profundidade, a calagem aumentou os teores de Ca e Mg e reduziu a saturação por alumínio e o teor de potássio (Tabela 2). A aplicação de gesso agrícola aumentou de forma linear os teores de Ca, S-SO₄²⁻ e K e diminuiu de forma linear a saturação por alumínio (Tabela 2).

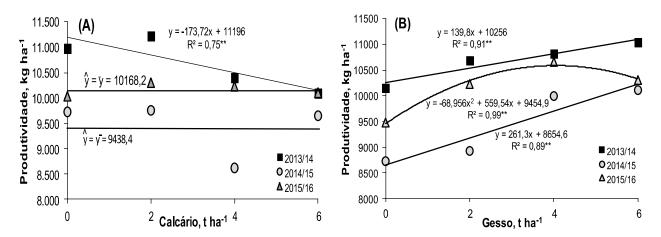
Tabela 2: Atributos químicos do solo na camada de 0,20-0,40 m de profundidade em função da aplicação de calcário e gesso aos 35 meses após a aplicação de calcário Dolomítico. Santa Rosa do Sul, Safra 2015/16.

Tratamentos	pH¹	Ca	Mg	Sat. Al	S-SO ₄ -2	P^2	K	Ca/Mg
Calcário t ha ⁻¹	mmol _c dm ⁻³		%	mg dm ⁻³		mmol _c dm ⁻³		
0	4,30	23,58	16,83	14,26	22,20	10,01	0,45	1,4
2	4,36	24,00	17,67	12,12	24,44	10,03	0,44	1,4
4	4,33	24,75	18,92	12,19	21,47	9,30	0,36	1,3
6	4,36	30,17	21,25	8,1	21,02	9,61	0,38	1,4
Efeito	ns	L**	L**	L**	ns	ns	L*	ns
C.V. (%)	4,58	14,23	18,76	25,37	22,97	25,15	22,75	19,31
Gesso t ha ⁻¹								
0	4,36	24,41	18,17	14,30	17,72	9,17	0,36	1,4
2	4,30	24,83	18,58	11,52	20,27	9,22	0,38	1,3
4	4,34	26,08	18,83	10,98	22,00	10,46	0,43	1,5
6	4,36	27,17	19,08	9,88	29,14	10,11	0,46	1,4
Efeito	ns	L*	ns	L**	L**	ns	L**	ns
C.V. (%)	3,84	14,18	17,60	24,31	24,11	25,74	23,14	19,37

¹ pH em Cacl₂ 0,01 mol L⁻¹, ² P extraído por solução de Mehlich-1; L = efeito linear por regressão polinomial; ** p < 0,01, * p < 0,05, ns – não significativo.

Os efeitos da aplicação de gesso agrícola nos atributos químicos do solo foram significativos até 0,80 m de profundidade, aumentando de forma linear os teores de Ca (Figura 1A) e S-SO₄²⁻(Figura 1B). Esses resultados corroboram com Caires et al. (2004; 2006) que estudando gessagem superficial em sistema de plantio direto em terras altas, constataram elevação nos teores de S-SO₄²⁻ em todo perfil do solo (até 0,80 m), aos 43 meses, cujo efeito perdurou até os 53 meses da aplicação.

Figura 1: Teores de Ca (A) e S-SO₄²⁻ (B) no perfil do solo de 0,40-0,60 e 0,60-0,80 m de profundidade em função da aplicação de gesso agrícola (33 meses após a aplicação). Santa Rosa do Sul, Safra 2015/16.


Não houve interação significativa na produtividade de grãos de arroz entre aplicação de calcário dolomítico e gesso agrícola.

A resposta na produtividade de grãos do arroz híbrido Inov CL®, em função da calagem, foi diferente para cada ano avaliado. Na primeira safra foi observado efeito linear negativo das doses de calcário e, no segundo e terceiro anos, a calagem não afetou a produção de grãos de arroz (Figura 2A). A melhoria dos atributos químicos do solo (Tabela 1 e 2) causada pela aplicação de calcário não foi eficiente em aumentar a produtividade de arroz irrigado. A amostragem foi realizada no período em que o solo não se encontrava saturado, portanto, o aumento do valor do pH do solo na ordem de 0,55 unidade de pH, entre a testemunha e a maior dose de calcário na camada de 0–0,20 m de profundidade, pode ser potencializada com a inundação da área. Isso pode afetar a disponibilidade de micronutrientes e, na camada de 0,20-0,40 m de profundidade, houve descrécimo de K com a calagem, influenciando negativamente a produtividade da cultura. Fageria (2000) e Duarte et al. (1999) comentam que o arroz é uma espécie adaptada às condições de acidez do solo, assim talvez pela sua adaptação não necessite de calagem.

A aplicação de gesso agrícola aumentou significativamente a produtividade do arroz híbrido Inov CL[®] nas três safras estudadas (Figura 2B). Respostas de gramíneas como trigo (*Triticum aestivum L.*) à aplicação de gesso agrícola é encontrada na literatura (CAIRES et al., 2002). SORATO et al. (2010) também observaram aumento na

produtividade de grãos de arroz cultivado em terras altas com a aplicação de gesso agrícola.

Os aumentos nos teores de Ca e S-SO4²⁻ no perfil do solo estudado (Tabela 1 e 2, Gráfico 1A e 1B), bem como o aumento no teor de K na camada de 0,20–0,40 m (Tabela 2), causados pela aplicação de gesso, possivelmente foram os fatores responsáveis pela resposta positiva da cultura à adição de gesso. Os incrementos na produção foram da ordem de 140 e 260 kg de arroz para cada tonelada de gesso aplicada, para a primeira e segunda safras, respectivamente. Na terceira safra, a produtividade de grãos do híbrido Inov CL® apresentou resposta quadrática em função das doses de gesso aplicadas. A dose de máxima eficiencia técnica foi estimada em 4,1 t ha-1 de gesso agrícola. Em comparação com o tratamento testemunha, houve um incremento de 1135 kg de grãos com o emprego da dose de máxima eficiência técnica, ou seja, houve um acréscimo de 280 kg de grãos para cada tonelada de gesso agrícola aplicada.

Figura 2: Produtividade de três safras consecutivas do híbrido de arroz irrigado Inov CL[®] em função da aplicação de Calcário Dolomítico (A) e Gesso Agrícola (B). ** Significativo p<0,01. Santa Rosa do Sul, Safras 2013/14, 2014/15 e 2015/16.

Neste estudo o híbrido de arroz irrigado Inov CL[®] apresentou alto potencial produtivo para a região, com produtividade média de 10094 kg ha⁻¹ de grãos (10675 kg ha⁻¹ em 2013/14, 9438 kg ha⁻¹ em 2014/15 e 10168 kg ha⁻¹ em 2015/16). Mesmo no ano e no tratamento com menor produtividade, o híbrido Inov CL[®] apresentou produtividade média acima de 8600 kg ha⁻¹, ou seja, acima da produtividade média do Brasil e de Santa Catarina, a qual é de 5266 e 7338 kg ha⁻¹, respectivamente (SOSBAI, 2014).

4 CONSIDERAÇÕES FINAIS

A aplicação de calcário dolomítico ocasionou melhoria nos atributos químicos do solo até 0,40 m de profundidade, porém não aumentou a produtividade de arroz irrigado, sendo que na primeira safra promoveu redução na produtividade da cultura.

A aplicação de gesso agrícola aumentou os teores de Ca e S-SO₄²⁻ até 0,80 m de profundidade e ocasionou incrementos na produtividade de arroz irrigado nas três safras estudadas, demonstrando potencial de uso do produto para esta cultura.

AGRADECIMENTOS

Agradecimentos ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) pelo apoio financeiro ao projeto e pelo fornecimento de bolsas de estudo aos alunos, ao Instituto Federal Catarinense - *Campus* Santa Rosa do Sul pela disponibilidade de área e laboratório e a empresa RiceTec pela parceria e apoio no desenvolvimento do projeto.

REFERÊNCIAS

CAIRES, E.F.; FELDHAUS, I.C.; BARTH, G. & GARBUIO, F.J. Lime and gypsum application on the wheat crop. **Sci. Agric.**, 59:357-364, 2002.

CAIRES, E.F.; KUSMAN, M.T.; BARTH, G.; GARBUIO, F.J. & PADILHA, J.M. Alterações químicas do solo e resposta do milho à calagem e aplicação de gesso. **R. Bras. Ci. Solo**, 28:125-136, 2004.

CAIRES, E.F.; GARBUIO, F.J.; ALLEONI, L.R.F.; CAMBRI, M.A. Calagem superficial e cobertura de aveia preta antecedendo os cultivos de milho e soja em sistema plantio direto. **R. Bras. Ci. Solo**, 30:87-98, 2006.

CARVALHO, M.C.S. & RAIJ, B. van. Calcium sulphate, phosphogypsum and calcium carbonate in the amelioration of acid subsoils for root growth. **Plant Soil**, 192:37-48, 1997.

COMISSÃO DE QUÍMICA E FERTILIDADE DO SOLO. **Manual de adubação e de calagem para os estados do RS e SC.** 10.ed. Porto Alegre: Sociedade Brasileira de Ciência do solo – Núcleo Regional Sul, 2004. 394 p.

DUARTE, A.P.; QUEIROZ-VOLTAN, R.B.; FURLANI, P.R.; KANTHACK, R.A.D. Resposta de cultivares de arroz de sequeiro à calagem. **Bragantia**, v.58, p.353-361, 1999.

EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA – EMBRAPA. Centro Nacional de Pesquisa de Solos. **Sistema Brasileiro de Classificação de solos**. Rio de Janeiro, 2006. 306p.

FAGERIA, N.K. Resposta de arroz de terras altas à correção de acidez em solo de cerrado. **Pesquisa Agropecuária Brasileira**, v.35, p.2303-2307, 2000.

FERREIRA, D.F. Sisvar: a computer statistical analysis system. **Ciência e Agrotecnologia (UFLA),** v. 35, n.6, p. 1039-1042, 2011.

SORATTO, R.P.; CRUSCIOL, C.A.C.; MELLO, F.F.C. Componentes da produção e produtividade de cultivares de arroz e feijão em função de calcário e gesso aplicados na superfície do solo. **Bragantia**, Campinas, v. 69, n. 4, p965-974, 2010.

SOSBAI – Sociedade Sul – Brasileira de Arroz Irrigado. **Arroz Irrigado: Recomendações técnicas da pesquisa para o Sul do Brasil.** XXX Reunião Técnica da Cultura do Arroz Irrigado, Bento Gonçalves, RS. Santa Maria, 2014. 192 p., II.

RAIJ, B.Van. Gesso agrícola na melhoria do ambiente radicular no solo. São Paulo, **Associação Nacional para Difusão de Adubos e Corretivos Agrícolas**, 1988, 111p.