ESTUDO DAS VARIÁVEIS DO PROCESSO EM UMA PLANTA PARA A PRODUÇÃO DE BIODIESEL A PARTIR DE ÓLEO RECICLADO

Marcelo Dal Bó⁽¹⁾; Fernanda Di Queiroz Freitas⁽²⁾, André Sorato Fragnani⁽³⁾, Karoline Machinski⁽⁴⁾, Leticia Fratoni do Livramento⁽⁵⁾

¹Instituto Federal de Santa Catarina/Professor/marcelo.dalbo@ifsc.edu.br
²Instituto Federal de Santa Catarina/Estudante/fernanda1queiroz44@gmail.com
³Instituto Federal de Santa Catarina/Estudante/andrefrag08@gmail.com
⁴Instituto Federal de Santa Catarina/Estudante/karoline.machinski@gmail.com
⁵Instituto Federal de Santa Catarina/Estudante/leticiafratoni2016@gmail.com

Palavras-Chave: Transesterificação, Metanol, Biodiesel.

INTRODUÇÃO

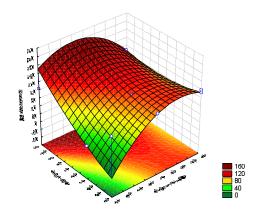
O biodiesel é um biocombustível derivado de fonte renovável para uso em motores a combustão interna com ignição por compressão. Sendo assim, este contribui para a redução da temperatura global do planeta, proporciona emprego e renda, é totalmente miscível em óleo diesel mineral, é biodegradável e não tóxico. Diante de tantas vantagens o processo mais comum de obtenção de biodiesel é a transesterificação de óleos vegetais e gorduras animais (ENCARNAÇÃO, 2008).

No processo de transesterificação, para obtenção de biodiesel, os triglicerídeos presentes no óleo são transformados em moléculas menores de ésteres de ácido graxo (biodiesel) a partir de um agente transesterificante (álcool primário) e um catalisador (base ou ácido).

METODOLOGIA

O projeto inicia-se com a coleta de dados de óleo gerado na região e a quantidade óleo residual que seria necessária para a realização do experimento de acordo com o planejamento fatorial realizado. Foram escolhidas as variáveis temperatura, tempo e concentração de catalizador, sendo o resultado final expresso em rendimento da reação de transesterificação. Após tal planejamento foi feito o dimensionamento, orçamento e compra dos equipamentos e reagentes.

Foram realizados doze experimentos, ocorrendo a análise, em cada, do rendimento, densidade, pH, viscosidade, índice de saponificação e acidez.


RESULTADOS E DISCUSSÃO

A Tabela 1 evidencia os resultados do biodiesel produzido através do planejamento experimental.

Tabela 1 – Resultados analisando temperatura, tempo e concentração de NaOH.

Exp.	Temp. (°C)	Tempo (min)	Conc. de Catal. (%)	Rend. (%)	Dens. (g/L)		
1	20	15	0.30	89,3	930		
2	20	30	1.00	22,7	953		
3	20	60	0.65	82.7	964		
7							
= 1							

A Figura 1 mostra os resultados do rendimento da reação química de transesterificação variando a temperatura, tempo de reação e mantendo a concentração de

catalisador em 0,65%.

Figura 1 – Superfície de resposta para o rendimento da reação de transesterificação de acordo com a variação da temperatura e tempo.

Nota-se baixo rendimento e alta viscosidade em concentrações de catalizador inferior a 0,65%.

CONCLUSÃO

Analisando a influência de algumas variáveis do processo de produção de biodiesel a partir de óleo residual, os resultados mostram que o maior rendimento da reação encontra-se em temperatura maiores ou iguais a 40°C com concentração de catalizador maiores ou iguais a 0,65%.

AGRADECIMENTOS

Os autores deste trabalho agradecem ao Instituto Federal de Santa Catarina (IFSC), à Pró-Reitoria de Pesquisa, Pós-Graduação e Inovação – PROPPI e ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) pelo apoio financeiro e pelas bolsas concedidas ao projeto.

REFERÊNCIAS

ENCARNAÇÃO, Ana Paula Gama. Geração de biodiesel pelos processos de transesterificação e hidroesterificação, uma avaliação econômica. 2008. 142 f. Dissertação (Mestrado) - Curso de Tecnologia de Processos Químicos e Bioquímicos, Universidade Federal de Rio de Janeiro, Rio de Janeiro, 2008.